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A Technical details of the estimation procedure

In this appendix, we provide a more detailed description of the estimation procedure that we

introduce in Section (2). As we have described before, we estimate the model in Equation

(1) using a Bayesian estimator (Rossi et al., 2012). The Bayesian estimation algorithm we

use to construct the joint posterior distribution of the model parameters in Equation (1) is

a Markov Chain Monte Carlo (MCMC) algorithm (Korteweg, 2013; Korteweg and Sorensen,

2017). Below we describe the steps of the MCMC algorithm as they apply to estimate our

model.

To begin, we rewrite Equation (1) by combining the parameter for the average cumulative

abnormal return and all time-specific return components in a single parameter vector β:

yic = Xicβ + γi + εic (11)

where Xic is a matrix with a vector of ones as its first column (to capture the intercept α)

and year indicators as its remaining columns. Thus, Xic has 1 + T columns, where T is the

time span (in number of years) of our data. β = [β0, β1, ..., βT ]′ is a vector of length 1 + T ,

where β0 is the estimate for the model intercept and [β1, ..., βT ]′ are estimates of time fixed

effects. The distributional assumptions for the random effect γi and the campaign-specific

error term εic are stated in Equations (2) and (3), i.e. γi ∼ N (0, σ2
γ) and εic ∼ N (0, σ2

ε ).

The main objective of our estimation procedure is then to estimate the parameter vec-

tor θ ≡ (β, σ2
γ, σ

2
ε ) conditional on observing cumulative abnormal announcement returns yic

of the hedge fund activists’ campaigns, the matrix Xic, and our distributional assumptions

for σ2
γ and σ2

ε . To define the joint posterior distribution of the model parameters, we first

have to augment the parameter vector θ with latent values for the hedge fund-specific ran-
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dom effects γi. The joint posterior distribution of the model parameters is then defined as

f(θ, {γi}|Data). The MCMC algorithm produces a set of draws from this joint posterior

using the Gibbs sampling technique (Geman and Geman, 1984; Gelfand and Smith, 1990;

Korteweg, 2013).

The implementation of the MCMC algorithm (with Gibbs sampling) makes use of the

Hammersley - Clifford theorem, and splits the joint posterior f(θ, {γi}|Data), into three

complete conditional distributions, which are then sequentially sampled from. These three

conditional distributions are: 1) the distribution of the variance of the campaign-specific

error term (σ2
ε ) and beta coefficients (β) − f(β, σ2

ε |σ2
γ, {γi}, Data); 2) the distribution of

hedge fund-specific latent random effects (γi) − f({γi}|θ,Data); and 3) the distribution of

the variance of the hedge fund-specific random effect (σ2
γ) − f(σ2

γ|β, σ2
ε , {γi}, Data). We

sample from each of the distributions 1−3 sequentially, conditional on the most recent draw

of the other parameters.

In the first step, sampling from the distribution of the variance of the campaign-specific

error term and beta coefficients, we estimate a standard Bayesian regression. In particular,

for each hedge fund activist i, the regression (likelihood) model takes the form

yi −Wiγi = Xiβ + εi (12)

The above equation is stacked across the N hedge fund activists in the sample. Then,

y = [y′1, y
′
2, ..., y

′
N ]′ is a vector of stacked cumulative abnormal returns at the filing of a 13D

for each campaign c initiated by a hedge fund activist i, across the N hedge fund activists

in the sample. Thus the length of vector y is L =
∑N

i=1 ci (ci, which is the total number of

campaigns per hedge fund activist i). The matrixW , is a L×N matrix of indicator variables,

with each column vector having ones in the rows corresponding to each hedge fund activist

and zeros in all other rows. The vector γ = [γ1, γ2, ..., γN ]′ is a vector of length N , containing

the hedge fund-specific random effect. To reiterate, X is a matrix with a vector of ones as
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its first column (to capture the model intercept) and year dummy vectors as its remaining

columns. Thus, matrix X is a L× (1 + T ) matrix, where T is the time span (in number of

years) for the sample data. β = [β0, β1, ..., βT ]′ is a vector of length 1 + T , where β0 is the

estimate for the model intercept, and [β1, ..., βT ]′ are estimates of time fixed effects. With

the conjugate priors,

σ2
ε ∼ IG(a0, b0) (13)

and

β|σ2
ε ∼ N (µ0, σ

2
εΣ
−1
0 ) (14)

The posterior distribution of the model parameters β and σ2
ε is

σ2
ε |Data ∼ IG(a, b) (15)

and

β|σ2
ε , Data ∼ N (µ, σ2

εΣ
−1) (16)

where

a = a0 + L (17)

b = b0 + e′e+ (µ− µ0)
′Σ0(µ− µ0) (18)

µ = Σ−1(X ′(y −Wγ) + µ0Σ0) (19)

Σ = X ′X + Σ0 (20)

e = y −Wγ −Xβ (21)

We use diffuse prior distributions (Eq. (13) and (14)) to simulate the draws from the

posterior marginal distributions (Eq. (15) and (16)), so that the results are driven by our

data and not our prior assumptions. As suggested by Korteweg (2013), we set the parameters

of the conjugate prior in Eq. (13) to a0 = 2.1 and b0 = 0.152. This implies that the prior
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belief about the expected value of σε is that E[σε] = 0.128 and that the 99% credible interval

for σε is 0.054 to 0.431. The parameters of the prior distribution of β (Eq. (14)) are taken

as µ0 = 0 and Σ0 = 1
10,000

× 11+T . The matrix 11+T is a (1 + T ) × (1 + T ) identity matrix.

Thus the prior mean of β = 0 and its standard deviation is 100× σε.

Given the conditioning on parameters β and σ2
ε from the previous sampling step, now

we draw the hedge fund-specific random effects γi by estimating the following regression

(likelihood) model for each hedge fund activist i:

yi −Xiβ = Wiγi+ εi (22)

Given the prior in Eq. (2), the posterior distribution of γ is;

γ|θ,Data ∼ N (µγ, σ
2
εΩ
−1) (23)

where;

Ω = W ′W +
σ2
ε

σ2
γ

1N (24)

µγ = Ω−1(W ′(y −Xβ)) (25)

1N is a N ×N identity matrix.

The prior distribution of γ (Eq. (2)) has a mean of zero, hence all γs are set to zero at

the start of the algorithm. The parameter assumptions for the prior distribution of σ2
γ are

discussed in the next step.

Given the conditioning on parameters β, σ2
ε and γi, which we have drawn in the previous

two steps, we now draw the variance of hedge fund-specific random effects σ2
γ. Using an

inverse gamma prior

σ2
γ ∼ IG(c0, d0) (26)
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the posterior distribution of σ2
γ is

σ2
γ|σ2

ε , β, {γi}, Data ∼ IG(c, d) (27)

where

c = c0 +N (28)

d = d0 + γ′γ (29)

Similar to what we have done before, we set the parameters of the prior distribution of σ2
γ

(Eq. (26)) so that the prior itself is uninformative. We set the parameters of the conjugate

prior in Eq. (26) to c0 = 2.1 and d0 = 0.152. This implies that the prior belief about the

expected value of σγ is that E[σγ] = 0.128 and that the 99% credible interval for σγ is 0.054

to 0.431.

After each complete cycle of sampling the parameters, we repeat the sampling cycle. The

resulting sequence of parameter draws forms a Markov chain, whose stationary distribution

is exactly the joint posterior f(θ, {γi}|Data). Given a sample of draws from this stationary

distribution of the Markov chain, one can characterize the marginal posterior distributions

of the model parameters f(θ|Data) and the hedge fund-specific random effect f({γi}|Data).

This is the essence of the MCMC algorithm using Gibbs sampling. In our analysis, we repeat

the cycle of draws 100, 000 times to simulate the posterior distributions and record every

10th draw from the posterior to characterize the marginal posterior distributions of model

parameters θ and {γi}.

This Bayesian estimation technique is useful in deriving the asymptotic distributions of

our variance parameters and (nonlinear) functions of these parameter.
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B Estimating the speed of learning

In this appendix, we describe our estimation procedure to obtain the probability described by

Equation (10). To reiterate, Equation (10) describes the probability that hedge fund activist

i’s true value of skill, γi, lies above the P th percentile of the distribution of γ, conditional on

observing N cumulative abnormal announcement returns to campaigns of hedge fund activist

i, and N cumulative abnormal announcement returns of the marginal P th percentile hedge

fund activist.

In order to construct that probability, we simulate a cross-section of 100 hedge fund

activists that engage in 2 campaigns every year between 2001 and 2018. Hence, each of

the 100 hedge fund activists undertakes a total of 36 campaigns, resulting in a simulated

cross-section of 3, 600 campaigns. The cumulative abnormal announcement return for each

simulated campaign is constructed according to Equation (1), using the posterior estimate

of the parameter vector θ ≡ (β, σ2
γ, σ

2
ε ) at the end of each of the 100, 000 Markov chains.

At the end of each Markov chain, each of the 100 simulated hedge fund activists receives a

random draw of γi from the full posterior distribution of γi. Similarly, at the end of each

Markov chain, each of the 3, 600 simulated campaigns receive a random draw of εic from the

full posterior distribution of σε. Thus, a new panel is simulated at the end of each Markov

chain. This simulated panel then serves as the observed campaign history for the 100 hedge

fund activists at the end of each Markov chain. Given this simulated panel, we can construct

the probability described by Equation (10) for each of the 100 hedge fund activists at the

end of each Markov chain over their full observed history of campaigns. We then report the

average probability across the 100 simulated activists, over the 100, 000 Markov chains, for

each incremental campaign (1 to 36) over the campaign history in Figure 3.

C Measuring campaign specialization

This appendix provides an example of how to calculate our third measure of campaign

specialization. Let us begin by considering an activist that uses campaign tactics as described
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in Online Appendix Table OA2. The table reports tactic clusters, i.e. we have grouped

individual tactics into the tactic clusters of Appendix Table A1. With the information of

Online Appendix Table OA2, we first compute the usage frequencies for each tactic cluster

across the activist’s set of campaigns. In our case, the first cluster occurs once, the second

cluster occurs seven times, etc. We summarize the frequencies in an array of cluster-frequency

pairs: {(1, 1), (2, 7), (3, 3), (4, 4), (5, 1), (6, 3), (7, 3), (8, 3), (9, 0)}.

In a second step, we then rank-order the array of cluster-frequency pairs and assign

a rank order number to each pair. The result is an array of rank-order-number-cluster-

frequency triplets: {(1, 2, 7), (2, 4, 4), (3, 3, 3), (4, 6, 3), (5, 7, 3), (6, 8, 3), (7, 1, 1), (8, 5, 1)}. For

each activist, we then compute an average tactic score as the sum-product of the rank order

number scores and the cluster frequencies, scaled by the sum of the cluster frequencies. In

particular, for our example, the average tactics score (ATS) is:

AT S =
1× 7 + 2× 4 + 3× 3 + 4× 3 + 5× 3 + 6× 3 + 7× 1 + 8× 1

7 + 4 + 3 + 3 + 3 + 3 + 1 + 1
(30)

In the third step, we compute tactics scores (TS) for each of the activist’s campaigns.

These are defined as the numerator of the average tactics score, i.e. the sum-product of

the rank order number scores and the cluster frequencies, computed separately for each

campaign. For example, the second campaign of our activist (Campaign ID 2) gives us:

T S = 1× 1 + 3× 1 + 8× 1 + 5× 1 = 16 (31)

We find a tactics score for each campaign of the activist, and then calculate the sum of the

squared deviations of each activist’s campaign-specific tactic scores TSc from the activist-

specific average tactic score (ATS). Finally, we convert this sum of squared deviations

into a standard deviation, which becomes our third measure of activist-specific campaign

specialization. Higher values of the measure indicate that an activist’s choice of tactics vary

more from its average tactical pattern (the activist is more flexible in the means used). In
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contrast, smaller values of the measure indicate that the activist deviates less in its choice

of tactics from its average tactical pattern (the activist uses a more standardized approach).

D Constructing buy-and-hold abnormal returns

The first step in in constructing long-term buy-and-hold abnormal returns is the construction

of reference portfolios (Lyon et al. (1999)). We start with with all NYSE/AMEX/Nasdaq

firms with available data on the monthly return files extracted from CRSP for the period

January 1996 through December 2018. We delete the firm-month returns on securities iden-

tified by CRSP as other than ordinary common shares (CRSP share codes 10 and 11). 70

Reference portfolios are then formed on the basis of firm size and book-to-market ratios as

follows.

We construct 14 size reference portfolios as follows:

1. Calculate firm size (market value of equity calculated as price per share multiplied by

shares outstanding) in June of each year for all firms.

2. In June of year t, rank all NYSE firms on the basis of firm size and form size decile

portfolios based on these rankings.

3. AMEX and Nasdaq firms are placed in the appropriate NYSE size decile based on their

June market value of equity.

4. Then, further partition the smallest size decile, decile one, into quintiles on the basis

of size rankings of all firms (without regard to exchange) in June of each year. This is

done because approximately 50% of all firms fall in the smallest size decile.

Next we construct 5 book-to-market reference portfolios as follows:

1. Calculate a firm’s book-to-market ratio using the book value of common equity (ceqq)

divided by the market value of common equity in December of year t− 1.
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2. Each size portfolio is then further partitioned into five book-to-market quintiles (with-

out regard to exchange) in June of year t, based on the t− 1 book-to-market ratios of

the constituent firms of respective size deciles.

Once the universe of firms is sorted in these 70 buckets, we calculate 3-, 6-, and 9-month

buy-and-hold returns for the size and book-to-market reference portfolios. This involves

first compounding the returns on individual securities constituting the portfolio and then

summing across securities.

Rbh
psτ =

ns∑
i=1

[∏s+τ
t=s (1 +Rit)

]
− 1

ns
(32)

where Rbh
psτ is the buy-and-hold return for reference portfolio p in month s for holding

period τ , Rit is the return for portfolio security i at time t (s <= t <= τ) and ns is the number

of securities in the reference portfolio in month s. Calculating buy-and-hold abnormal returns

in this fashion removes the the new listing and rebalancing biases (as discussed in Barber

and Lyon (1997), Kothari and Warner (1997)).

Then the long-horizon buy-and-hold abnormal returns are calculated for each target firm

in the activist campaign sample as:

ARiτ = Riτ −Rbh
piτ (33)

where Rbh
piτ is the buy-and-hold return (over holding period τ) on a size/book-to-market

reference portfolio for target firm i; Riτ is the buy-and-hold return for target firm i over

holding period τ and ARiτ is the buy-and-hold abnormal return from holding this target

firm for a period τ . All these return variables are calculated for every month s in the sample

data.

Using the buy-and-hold abnormal return ARiτ for each target firm in the activist cam-

paign sample, we can calculate the average buy-and-hold abnormal return (BHAR) as:
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BHARmτ =
1

nm

nm∑
i=1

ARimτ (34)

where BHARmτ is the average buy-and-hold abnormal return (over holding period τ)

for all campaigns that are initiated by the top quintile activists in year (t); ARimτ is the

individual buy-and-hold abnormal return (over holding period τ) for target firms of top

quintile activists in year (t) and nm is the total number of campaigns initiated by the top

quintile activists in year (t). In this way we calculate the 3-, 6-, and 9-month average buy-

and-hold abnormal return BHARmτ for activist campaigns that are initiated by the top

quintile activists in year (t).

The ranking of activists into quintiles is based on two strategies. In the first strategy

we rank the activists into quintiles based on their skill (γ) estimated using the Markov

Chain Monte Carlo (MCMC) Bayesian estimation algorithm. The estimated γ used for this

ranking is based on CAR[−10,+1] using the “Fama-French 3-Factor Model". This ranking is

constructed every year (t− 1) based on all available data till that year (t− 1). In the second

strategy we rank the activists into quintiles based on the average CAR for each activist.

The average CARs are the CAR[−10,+1] using the “Fama-French 3-Factor Model". This

ranking is also constructed every year (t−1) based on all available data till that year (t−1).

Barber and Lyon (1997) document that long-horizon buy-and-hold abnormal returns

are positively skewed, which causes t-statistics to be negatively biased. To eliminate this

skewness bias Lyon et al. (1999) suggest the use of a bootstrapped skewness-adjusted t-

statistic to test the significance of the average buy-and-hold abnormal return BHARmτ .

The skewness-adjusted t-statistic, tsa, (developed by Johnson (1978)), is calculated as:

tsa =
√
nm

(
S +

1

3
γ̂S2 +

1

6nm
γ̂

)
(35)

where
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S =
BHARmτ

σ(ARimτ )

γ̂ =

∑nm
i=1(ARimτ −BHARmτ )

3

nmσ3
(ARimτ )

and, σ(ARimτ ) is the cross-sectional sample standard deviation of abnormal returns for the

sample of nm firms.

Lyon et al. (1999) document that the bootstrapped application of this skewness-adjusted

t-statistic yields well specified test statistics. Bootstrapping the t-statistic involves drawing

1, 000 resamples, of size nb = nm/4, from the original sample. The skewness-adjusted t-

statistic (tsa) is then calculated for each of these 1, 000 bootstrapped resamples. Next,

the critical values (x∗l and x∗u), for the skewness-adjusted t-statistic (tsa), to reject the null

hypothesis that the average long-run buy-and-hold abnormal return (BHARmτ ) is zero,

at the α significance level, are determined. These critical values are ascertained from the

distribution of the 1, 000 values of the skewness-adjusted t-statistic calculated for each of the

1, 000 bootstrapped resamples, by solving the equation below:

Pr[tbootstrappedsa ≤ x∗l ] = Pr[tbootstrappedsa ≥ x∗u] =
α

2
(36)
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Figure OA1: Number of Hedge Fund Activists per Year
This figure compares the annual number of hedge fund activist between our sample and a
sample that uses the same data collection procedure and estimation methods as in Brav et al.
(2008) and Brav et al. (2010). This updated sample is provided on Alon Brav’s website. The
bar chart represents our sample, which is based on Shark Repellent’s hedge fund activism
data from 2001 - 2018. Each activist in our sample initiates at least one campaign in a
given year, which we observe through the respective Schedule 13D filing. The dashed line
represents the updated sample of Brav et al. (2008) and Brav et al. (2010), which is available
from 2001 to 2016.
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Table OA2: Example: Tactic Groups used by an Activist through its Campaigns
This table shows the different tactic groups used by an activist (“Activist ID" —1) through
all its campaigns (“Campaign IDs" —1 thru 8). The particular tactic group employed by the
activist in a particular campaign is indicated by “1" in the columns labeled “Cluster" —01
thru 09. If that tactic group is not employed by the activist it is indicated as “0".

Cluster

Activist ID Campaign ID 01 02 03 04 05 06 07 08 09

1 1 1 0 0 0 0 0 0 0 0
1 2 0 1 1 0 1 0 1 0 0
1 3 0 1 0 1 0 1 0 1 0
1 4 0 1 0 1 0 0 0 0 0
1 5 0 1 0 0 0 1 0 0 0
1 6 0 1 1 1 0 0 1 1 0
1 7 0 1 1 1 0 0 1 1 0
1 8 0 1 0 0 0 1 0 0 0
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